MP-825 Motor System Protection Relay Variable Underload Monitor Single Phase

PROTECHTOR RELAYS

Application Examples

- Comprehensive Motor System Protection against conditions of underload, overload and supply fluctuations.
- Detection of conveyor belt breaks.
- Detection of clogged fan filters in spray paint installations.
- Protection of pumps against running dry, closed outlet valve or no-flow (centrifugal pumps).

Features

- Underload sensing by measuring the phase angle.
- Underload sensitivity adjustment after calibration of nominal phase angle.
- Overload sensing by measuring the current amplitude.
- Microprocessor-based technology.
- Direct in-line current sensing of motors up to 1.1kW.
- Auto-calibration of overload and underload limits.
- Auto-calibration of overvoltage and undervoltage limits.
- Direct interface with a conventional current transformer.
- Liquid level control (programmable for charge or discharge).
- External control (programmable for normally open/closed contacts).
- Start-up delay (fixed, 3 seconds standard).
- Latching on underload and overload conditions.
- Fail-to-safe design.
- Din-rail mount.
- 5A SPDT relay output.
- Description of Operation

SEE PAGE 104 FOR ORDERING OPTIONS

The Protechtor **MP-825** is a multi-featured relay providing comprehensive protection for single phase AC induction motor systems. The unit is a phase angle, current sensing and voltage sensing relay, that can automatically set up trip points within specified limits around the normal operating conditions of a particular motor system. After auto calibration, the underload sensitivity can further be adjusted to accommodate a wide range of load profiles. Motor systems up to 1.1kW can be protected without the use of an external current transformer. An external current transformer must be used for motors higher than 1.1kW.

Calibration

Auto Calibration: If the unit is not in Uncalibrated Mode, with all LED's flashing simultaneously, see Calibration Reset below. To start auto calibration. power the unit up in Uncalibrated Mode. Press the Calibration Set/Reset pushbutton and hold it until only the green Relay ON LED starts flashing (approx. 5 seconds). The unit will now monitor the load of the motor and set up the overload, underload and voltage limits (this will take approx. 10 seconds). If calibration is successful the green Relay ON LED will stop flashing and stay on. If calibration is unsuccessful, the unit will return to the uncalibrated mode with all LED's flashing simultaneously. This means that the motor's load is outside the unit's specified calibration range (see Technical Specifications). Note: If calibration is unsuccessful, check the current direction (reverse if necessary), or the current magnitude (use an external CT if above 10Amps). Calibration Reset: The calibration limits can be reset when required by the user. Remove power from the unit. Press the Calibration Set/Reset pushbutton and apply power to the unit. The green Relay ON LED will illuminate. Hold the pushbutton down until all the LED's start flashing (approx. 3 seconds). This will reset the calibrated limits and return the unit to uncalibrated mode. Uncalibrated Mode: The unit is supplied uncalibrated from the factory. When power is applied to the unit all LED's will flash simultaneously and the relay energises to supply power to the motor. Note: The motor is unprotected in this mode and care should be taken before

Note: The motor is unprotected in this mode and care should be taken before applying power.

Normal Operation

Start-up Delay: When power is applied to the unit, the relay energises immediately, ignoring abnormal load conditions experienced during initiation. This time is fixed at 3 seconds.

Latching Faults

Underload Sensing: In an induction motor, the current always lags the voltage. By measuring this angular lag, an underload fault can be sensed. Loss of load will cause the angular lag to increase. When it exceeds the nominal value stored during calibration by the percentage set on the adjustment pot, the relay will de-energise after a 1 second response time. The unit will latch in this condition (see Faults Reset). If underload sensing is not required it can be

disabled by turning P1 completely clockwise to OFF (see description of controls).

Overload Sensing: If the current exceeds the set limit stored during calibration the relay will de-energise after a 3 second response time. The unit will latch in this condition (see Faults Reset).

Faults Reset: If the unit latches in a fault condition, the relay will remain deenergised until reset. A reset can be performed by either connecting the reset input (R) to Earth (E) via an external switch or cycling the power supply to the unit.

Reset Lockout: If the system is reset more than 3 times in a 15 min period the reset lockout is enabled, prohibiting continuous resetting when a fault condition exists. Cycling the power supply to the unit will override the reset lockout and reset the unit.

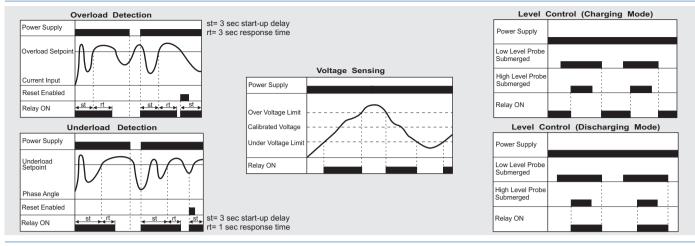
Caution: When using the reset input or cycling the power supply to the unit, the relay will be forced to energise even though a fault may exist. This could cause damage to equipment, therefore the fault must first be repaired before attempting to run the motor.

Non-latching Faults

Voltage Sensing: If the supply voltage increases or decreases by more than 10% of nominal, the relay will de-energise and the motor will be switched off. When the voltage has stabilised within safe limits, the relay automatically energises and the motor will start again.

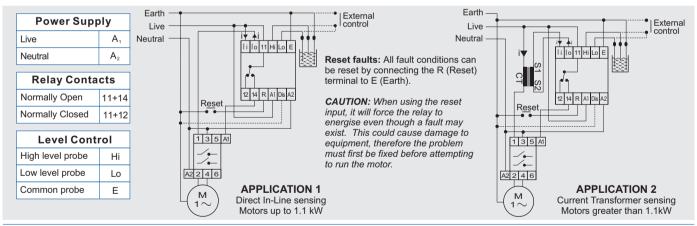
Control Functions

Level Control: The unit can monitor the level of conductive liquids. By using three probes, the unit controls the level of the liquid in a reservoir between a low and a high level. The unit normally operates in the Charging (Filling) mode, but can be programmed to the Discharging (Draining) mode by means of an external wire link.


Charging (Filling): [No external wire link.] The relay will energise when the liquid level drops below the low level probe. The relay will remain energised until the level reaches the high level probe. When the high level probe becomes submerged, the relay de-energises and remains off until the liquid level has dropped sufficiently to clear the low level probe.

Discharging (Draining): Link terminals Dis (discharging) and E (Earth). The relay will energise when the liquid level rises above the high level probe. The relay will remain energised until the level drops to below the low level probe. The relay then de-energises and remains off until the liquid level has risen sufficiently to submerge the high level probe.

External Control: The liquid level inputs can be used as a general-purpose external control to switch the relay on and off. If both high (Hi) and low (Lo) level inputs are connected to Earth (E), the relay will de-energise and similarly, if both Hi and Lo are disconnected, the relay will energise. (With terminals Dis and E linked, the relay will operate in the opposite sense.)


Operational Diagrams

Description of Controls

	back ☆i ☆o 11	L1: The red " UL / OL " LED.			TABLE	:1:			
	front Hi Lo E		GREEN	YELLOW	RED	UNIT STATUS			
		L2: The yellow "Level Control" LED.	ON	OFF	OFF	Normal Operation			
		L3: The green "Relay ON" LED.	OFF	ON	OFF	Liquid Level High (Low)			
L1—	UL/OL	LS. The green Relay ON LED.	OFF	OFF	ON	Overload			
L2—	Level		OFF	Flash	ON	Underload/Dry-Timing			
		Note: Collectively the 3 LED's indicate the status	OFF	OFF	Flash	Low voltage(uncal mode)			
L3—	PROTECHTOR MP825	Of unit, see Table 1.	OFF	ON	Flash	Under/Over Voltage			
PB1	Motor System Protection		Flash	Flash	Flash	Unit Uncalibrated			
101	Calibration Variable Underload Monitor	P1: Underload Sensitivity is set on P1. This	Flash	OFF	OFF	Unit Calibrating			
	Set / Reset (Single Phase)	is adjustable from 20% to 60% above the	OFF	ON	ON	Unit Faulty			
P1	1h6h	calibrated value. For general applications a setting of 25% is recommended. If set							
	^{15m} (+)=12h	completely clockwise to Off, the unit will not trip on unde	rload.						
	Restart 24h								
		PB1: Calibration Set / Reset is initiated with PB1.							
	front 12 14 R	Calibration Set: Refer to Calibration under Description of	Operatio	on above.					
	back A1 Dis A2 RHOMBERG	Calibration Reset: Refer to Calibration Reset under Dese	cription o	f Operatio	on above				

Wiring and Connection

Technical Specifications

POWER SUPPLY			CURRENT INPUT				RELAY		
Nominal Supply Voltage	100 - 120V AC	220 - 240V AC		Motors <1.1kW:		.1kW:		250V, 5A	SPDT
Supply Voltage Tolerance	80 - 144V AC	2 176 - 288V AC		Current limits to ensure calibration Repetitive accuracy		0,5 to 10A 1%		LEVEL	CONTROL
Supply frequency	50/60Hz			Maximum input current (continuous)				Sensitivity	50 kΩ
Isolation (current input to power supply)	2kV		Motors >1.1kW: (use external CT)			RESTART			
Power Consumption 4VA (approx.)			CT Example: 220/230/240V			Reset lockout	Max. 3 resets		
CALIBRATION				Motor	1.5		2.2kW		per 15 minutes
Phase Angle Limits:			Current Transformer	20/5 30/5		30/5			
Underload	90° or 120 - 160% of calibration value		RESPONSE						
Current Limits: Overload	13A or 125% of calibration value		Start-up Delay	3 seconds fixed, standard (extended times available on request)					
Voltage Limits:	±10% of calibration value		Response Delay	Overload 3 seconds On all other faults 1 second					

Additional information in Section J, page 131.